

Synthese und Strukturen von Bis(triethanolamin)lanthanoid-Komplexen

F. Ekkehardt Hahn* und Jörg Mohr

Technische Universität Berlin, Institut für Anorganische und Analytische Chemie, Straße des 17. Juni 135, D-1000 Berlin 12

Eingegangen am 24. Oktober 1989

Key Words: Lanthanide chelates / Praseodymiumbis(triethanolamine) trication / Ytterbiumbis(triethanolamine) trication

Synthesis and Structures of Bis(triethanolamine)lanthanide Complexes

Three novel lanthanide triethanolamine chelates ${Ln[N(CH_2-CH_2OH)_3]_2}(CF_3SO_3)_3$ (Ln = Pr, 1; Yb, 2; Lu, 3) were synthesized from Ln(CF_3SO_3)_3 and triethanolamine in THF. The structures of 1 and 2 were determined by single-crystal X-ray diffraction

Metallorganische Verbindungen der Lanthanoide sind ausnahmslos sehr reaktiv und hydrolyseempfindlich¹). Auch die Mehrzahl der Chelatkomplexe der Lanthanoide sind kinetisch labil²). Ausnahmen sind bekannt³⁾, besonders für die in der Kernspintomographie benutzten Gd-Komplexe der anionischen Liganden DOTA und DTPA⁴). Stabile Komplexe werden im allgemeinen mit chelatisierenden, makrocyclischen oder makrobicyclischen Liganden erhalten. Lanthanoidchelate des Typs $[Ln(tren)_2]^{3+}$ [tren = N(CH₂CH₂NH₂)₃] sind bekannt^{2,5)}. Diese Verbindungen dienten als Ausgangsmaterial für eine Templatsynthese, in der die primären NH2-Gruppen der beiden tren-Liganden verbrückt und die Komplexe mit dem makrocyclischen⁶⁾ und dem makrobicyclischen⁷⁾ Liganden erhalten werden konnten. Lanthanoid-Amin-Komplexe sind aber nicht nur kinetisch labil in Lösung sondern auch thermodynamisch weniger stabil als Komplexe mit Sauerstoff-Donor-Atomen. Wir berichten hier über kationische Lanthanoid-Komplexe mit dem neutralen Triethanolamin-Liganden als Vorstufe für die Darstellung von Kryptand-ähnlichen⁸⁾ Komplexen.

Lanthanoid-trifluormethansulfonate, $Ln(CF_3SO_3)_3^{9}$, reagieren mit zwei Äquivalenten Triethanolamin in THF zu den Bis(triethanolamin)lanthanoid-Komplexen 1-3.

Das diamagnetische Lutetium-Derivat **3** wurde mittels mikroanalytischer Daten und der ¹H-NMR-Spektroskopie vollständig charakterisiert. Das ¹H-NMR-Spektrum von **3** in [D₆]Aceton zeigt eine Tieffeldverschiebung für die Methylenprotonen im Komplex relativ zum freien Liganden (in [D₆]Aceton). Man beobachtet Resonanzen bei $\delta = 4.03$ und 3.61 für die OCH₂- und NCH₂-Gruppen in **3** und von $\delta = 3.60$ und 2.56 für ungebundenes Triethanolamin. Die Resonanz für die alkoholischen Protonen wird in **3** bei $\delta =$ 3.05 beobachtet, während dieses Signal beim freien Liganden bei $\delta = 4.87$ auftritt. Die Kernresonanzspektren der paramagnetischen studies. The isostructural compounds crystallize with three molecules of THF and possess nonacoordinate lanthanide ions with a monocapped tetragonal antiprismatic coordination geometry.

Verbindungen 1 und 2 sind weniger aussagekräftig. Für das Praseodym-Derivat 2 beobachtet man die Methylen-Resonanzen als breite Multipletts bei $\delta = 7.52$ und 4.97, wobei wir das Signal bei tieferem Feld der Sauerstoff-gebundenen Methylengruppe zugeordnet haben. Die Linienverbreiterung und Tieffeldverschiebung wird durch die Komplexierung an das paramagnetische Praseodym-Ion hervorgerufen.

Die Röntgenstrukturanalyse der isostrukturellen Komplexe 1 und 2 zeigt, daß diese Verbindungen mit 3 Molekülen THF in der asymmetrischen Einheit kristallisieren. Eines der THF-Moleküle ist direkt an das Lanthanoid koordiniert (Abb. 1, Pr-Derivat). Die Koordinationszahl für das Lanthanoid ist damit 9 und die Koordinationsgeometrie entspricht der eines verzerrten tetragonalen Antiprismas mit einer Kappe (Abb. 2, Pr-Derivat). Zwei der drei Trifluormethansulfonat-Anionen und ein weiteres THF-Molekül sind über Wasserstoff-Brücken an das Kation gebunden (Abb. 3, Yb-Derivat).

Abb. 1. ORTEP-Zeichnung des $\{Ln[N(CH_2CH_2OH)_3]_2\}^{3+} \cdot THF-Kations$ für die isostrukturellen Verbindungen $1 \cdot 3$ THF und $2 \cdot 3$ THF im Kristall (Pr-Derivat ist gezeigt)

Abb. 2. Die Koordinationsgeometrie um das Lanthanoid-Ion in 1·3 THF und 2·3 THF (Pr-Derivat ist gezeigt)

Abb. 3. Darstellung des {Yb[N(CH₂CH₂OH)₃]₂}³⁺ · THF-Kations von 2 · 3 THF mit zwei Triflat-Anionen und einem weiteren THF-Molekül

Die Ln-O-Abstände sind sehr regelmäßig und liegen im Bereich von 2.453(3)-2.479(3) Å für $1 \cdot 3$ THF und 2.311(5)-2.332(5) Å für das 0.137 Å kleinere¹⁰ Yb in $2 \cdot 3$ THF. Die nichtbindenden Abstände zwischen den Sauerstoffatomen O1-O3 einerseits und O4-O6 andererseits liegen im Bereich von 2.8131(6)-3.094(7) Å für Ln = Yb und 3.103(4)-3.300(5) Å für Ln = Pr. Es sollte möglich sein, diese Abstände wie in den Komplexen des Typs [Ln-(tren)]⁵ zu überbrücken und dadurch zum Komplex mit einem bicyclischen Liganden zu gelangen⁷.

1-3 sind gut in THF, Aceton und Methanol löslich. Sie sind unlöslich in Ether und Toluol, Benzol und Methylenchlorid. In Wasser erfolgt Hydrolyse und Bildung von Lanthanoid-oxid. Damit unterscheiden sich 1-3 von den Lanthanoid-Ionen mit Stickstoffkoordination, wie Ln[N(CH₂CH₂NH₂)₃]²⁺, die schon in Methanol hydrolyseempfindlich sind. 1-3 sind die ersten vollständig charakterisierten Triethanolamin-Derivate der Lanthanoide. Unsere Ergebnisse, wie auch die Röntgenstrukturanalysen der Triethanolamin-Derivate von Natrium¹¹, Strontium¹², Barium¹³ und Aluminium¹⁴⁾ haben ergeben, daß der Triethanolamin-Ligand stets als vicrzähniger Ligand auftritt. Die in Lit.¹⁵⁾ beschriebenen in THF und Methanol unlöslichen Mono(triethanolamin)lanthanoid-Derivate mit dreizähnigem Triethanolamin müssen daher skeptisch beurteilt werden.

Experimenteller Teil

Alle Umsetzungen wurden unter strengem Ausschluß von Feuchtigkeit und Sauerstoff in einer Argon-Inertgasatmosphäre durchgeführt. Es kamen nur sorgfältig von Wasser befreite Lösungsmittel zum Einsatz. ¹H-NMR: Bruker WP 80; Elementaranalysen: Perkin-Elmer-CHN-Analyzer 240 C im Institut für Anorganische und Analytische Chemie der TU Berlin.

 $Ln(CF_3SO_3)_3$, Ln = Pr, Yb, Lu: Die Darstellungsmethoden für diese Salze unterscheiden sich nur unwesentlich, so daß hier nur die Darstellung von Yb(CF₃SO₃)₃ beschrieben werden soll⁹. 21.80 g (55.5 mmol) Yb₂O₃ worden in 20 ml destilliertem Wasser suspendiert. Dazu gibt man unter Rühren 50 g (333 mmol) Trifluormethansulfonsäure (Vorsicht, es kann zu einer heftigen Reaktion kommen). Anschließend erhitzt man 30 min zum Rückfluß und rührt anschließend noch 12 h bei Raumtemperatur. Das Oxid sollte sich vollständig gelöst haben, und die Reaktionsmischung muß neutral sein. Falls noch nicht umgesetzte Trifluormethansulfonsäure vorhanden ist, wird diese durch portionsweisen Zusatz von Yb2O3 und kurzes Erhitzen zum Rückfluß neutralisiert. Danach wird die Reaktionsmischung durch eine D4-Fritte abgesaugt und das Filtrat trokkengesaugt. Man erhält einen weißen Feststoff, der zur Reinigung in 200 ml Acetonitril aufgenommen wird. Unlösliche Bestandteile werden durch Filtration abgetrennt, und die Lösung wird im Rotationsverdampfer eingedampft. Zur Entfernung letzter Lösungsmittelreste wird im Ölpumpenvakuum bei 130-140°C 48 h getrocknet. Das Produkt ist hygroskopisch und muß unter Schutzgas aufbewahrt werden.

Bis(triethanolamin)praseodym-trifluormethansulfonat (1): 2.0 g (3.40 mmol) $Pr(CF_3SO_3)_3$ werden in ca. 50 ml THF suspendiert. Dazu gibt man mit einer Spritze 1.01 g (6.80 mmol) frisch destilliertes Triethanolamin. Man beobachtet eine geringe Wärmeentwicklung, und der grüne Feststoff löst sich. Die grüne Lösung wird nun zur Vervollständigung der Reaktion noch 12 h bei Raumtemperatur gerührt. Man filtriert von eventuell vorhandenem Feststoff ab und kühlt die Lösung auf -26 °C ab. Es fällt ein grünes Pulver aus. Analysenreines, grünes, kristallines $1 \cdot 3$ THF wird durch zweimaliges Umkristallisieren aus THF erhalten. Das in den Kristallen enthaltene THF kann im Ölpumpenvakuum (12 h bei Raumtemperatur) vollständig entfernt werden; Ausb. 1.60 g (53%) der lösungsmittelfreien Verbindung 1.

```
\begin{array}{rl} C_{15}H_{30}F_{9}N_{2}O_{15}PrS_{3} \ (882.0) & \mbox{Ber. C} \ 20.42 \ H \ 3.40 \ N \ 3.17 \\ & \mbox{Gef. C} \ 20.18 \ H \ 3.37 \ N \ 3.55 \end{array}
```

Bis(triethanolamin) ytterbium-trifluormethansulfonat (2): Die Darstellung dieser Verbindung ist analog zur Synthese von 1. Der einzige Unterschied besteht in der guten Löslichkeit von Yb(CF₃SO₃)₃ in THF. Farblose Kristalle von $1 \cdot 3$ THF werden durch Umkristallisieren aus THF erhalten. Das THF kann im Ölpumpenvakuum vollständig entfernt werden. Die Ausb. beträgt 55% bezogen auf die lösungsmittelfreie Verbindung.

 $\begin{array}{cccccccc} C_{15}H_{30}F_{9}N_{2}O_{15}S_{3}Yb \ (914.1) & Ber. \ C \ 19.70 \ H \ 3.28 \ N \ 3.06 \\ Gef. \ C \ 20.79 \ H \ 3.47 \ N \ 3.14 \end{array}$

Bis(triethanolamin)lutetium-trifluormethansulfonat (3): Die Darstellung von 3 ist analog zur Synthese von 1 und 2. Lu(CF₃SO₃)₃ ist gut in THF löslich. Farblose Kristalle von 3.3THF werden durch Umkristallisieren aus THF erhalten. Die Ausb. an lösungsSynthese und Strukturen von Bis(triethanolamin)lanthanoid-Komplexen

Tab. 1. Positionsparameter und äquivalente isotrope thermische Parameter für 1 · 3 THF^{a)}

Atom	×	у	z	B _{eq} [Å ²]
PR	-0.04337(2)	0.02180(1)	0.02460(1)	1.27
S1	-0.05467(11)	0.03412(6)	0.25873(5)	2.04
S2	-0.03899(12)	0.28608(6)	0.93553(5)	2.16
53	0.56672(13)	0.2/205(/)	0.38421(0)	2.00
F1 E2	-0.0755(5)	-0.0000(2)	0.2439(2)	5.46
F3	0.0000(3)	-0.0360(3)	0.3264(2)	6.74
F4	0.0205(5)	0.3224(3)	0.8271(2)	5.68
F5	-0.1173(6)	0.2380(3)	0.8328(2)	7.40
F6	-0.1674(4)	0.3484(3)	0.8515(2)	5.88
<u>F</u> 7	0.6010(5)	0.2663(3)	0.2696(2)	5.62
F8	0.7297(5)	0.2011(2)	0.3164(3)	6.4/
F9	0.7503(5)	0.3177(2)	0.3149(2)	5.00
02	0.0902(3)	0.0215(2)	-0.03134(15)	2.14
03	-0.0185(3)	-0.1096(2)	0.04438(14)	2.09
04	-0.1876(3)	0.1125(2)	-0.01965(15)	1.96
05	-0.0545(3)	-0.0176(2)	-0.08159(13)	1.75
06	-0.1937(3)	-0.0093(2)	0.10446(14)	2.05
07	-0.0906(4)	0.0726(2)	0.3112(2)	3.32
08	-0.1579(3)	0.0087(2)	0.22225(15)	2.88
09	0.0485(4)	0.0651(2)	0.22514(15)	2.93
010	0.0000(4)	0.2334(2)	0.9532(2)	4.13
012	-0.0008(3)	0.2562(2)	0.9618(2)	2.99
013	0.4819(4)	0.2121(2)	0.3783(2)	3.72
014	0.5170(6)	0.3435(2)	0.3757(2)	4.95
015	0.6542(5)	0.2651(3)	0.4334(2)	4.50
016	-0.0605(3)	0.1394(2)	0.0856(2)	2.37
017	0.0991(4)	0.0095(3)	0.82788(15)	3.11
018	0.3833(5)	0.6938(2)	0.8752(2)	4.30
N1 N2	0.1920(3)	-0.0347(2)	-0.0007(2)	1.70
Ci	0 1937(4)	-0.0318(3)	0.1186(2)	2.33
Č2	0.2708(4)	-0.0311(3)	0.0619(2)	2.01
Č3	0.2374(5)	0.0862(3)	-0.0359(2)	2.28
C4	0.2554(5)	0.0059(3)	-0.0419(2)	2.07
C5	0.0877(5)	-0.1544(2)	0.0276(3)	2.42
C6	0.1725(4)	-0.1103(3)	-0.0141(2)	2.23
67	-0.2809(4)	0.0902(3)	-0.0637(2)	2.08
	-0.3496(4)	0.0259(3)	-0.0309(2)	2 18
C10	-0.2352(4)	-0.0887(2)	-0.0599(2)	1.82
Čiĭ	-0.3259(4)	-0.0237(3)	0.0934(2)	2.10
Č12	-0.3318(4)	-0.0698(2)	0.0361(2)	1.72
Č13	0.0124(6)	-0.0483(4)	0.2878(2)	3.53
Ç14	-0.0768(7)	0.2986(4)	0.8574(3)	3.97
C15	0.6715(6)	0.2636(3)	0.3191(3)	3.14
C16	0.0411(6)	0.1886(3)	0.1002(3)	3.12
C17	-0.0194(7)	0.2565(4)	0.1248(4)	4.78
C18	-0.1354(7)	0.2290(4)	0.1320(3)	3 27
C20	0.0908(6)	-0.0447(4)	0.7807(3)	3.79
Č21	-0.0088(6)	-0.0130(4)	0.7375(2)	3.70
Č22	-0.0319(7)	0.0641(3)	0.7574(3)	3.83
C23	0.0735(6)	0.0783(4)	0.8002(3)	3.82
C24	0.3050(10)	0.6869(4)	0.8257(3)	5.68
C25	0.3012(11)	0.7599(5)	0.7949(3)	6.12
026	0.3324(7)	0.8133(4)	0.0452(4)	4.40
027	0.4191(9)	0.7700(4)	0.0010(3)	0.01

^{a)} Der isotrope thermische Parameter B_{cq} ist definiert als 4/3 $[a^2\beta(1,1) + b^2\beta(2,2) + c^2\beta(3,3) + ab(\cos\gamma)\beta(1,2) + ac(\cos\beta)\beta(1,3)$ $+ bc(\cos\alpha)\beta(2,3)$; dabei sind a, b, und c die Zellparameter und $\beta(i,j)$ die anisotropen thermischen Parameter.

mittelfreiem 3 beträgt 50%. – ¹H-NMR (25°C, [D₆]Aceton, rel. TMS): $\delta = 3.05$ (br. s, NCH₂CH₂OH), 3.61 (t, NCH₂CH₂OH), 4.03 (t, NCH₂CH₂OH); Integralverhältnis 1:2:2.

 $\begin{array}{rl} C_{15}H_{30}F_{9}N_{2}O_{15}S_{3}Yb \ (916.1) & \mbox{Ber. C} \ 19.66 \ H \ 3.27 \ N \ 3.05 \\ Gef. \ C \ 20.75 \ H \ 3.71 \ N \ 3.76 \end{array}$

Röntgenstrukturanalyse von 1.3 THF: Zur Datensammlung wurde ein Enraf-Nonius-CAD-4-Diffraktometer mit Graphit-monochromatisierter Mo- K_x -Strahlung ($\lambda = 0.71073$ Å) benutzt. Kri-

stalle von 1 · 3 THF sind luftempfindlich und geben sehr leicht THF ab. Für die Kristallauswahl- und -präparation wurde eine modifizierte Version der von Veith und Bärnighausen vorgeschlagenen Apparatur benutzt¹⁶. {Pr[N(CH₂CH₂OH)₃]₂} · THF(CF₃SO₃)₃ · 2 THF, Kristallgröße 0.45 × 0.35 × 0.35 mm, Kristallsystem orthorhombisch, Raumgruppe P2₁2₁2₁, a = 10.582(3), b = 13.346(4), c = 22.302(5) Å, V = 4330(3) Å³, Z = 4, $d_{ber.} = 1.69$ g/cm³; Meßtemperatur -105(5)°C, Θ -2 Θ -Scans im 2 Θ -Bereich 2° $\leq 2\Theta \leq$ 50°, 7642 symmetrieunabhängige Intensitäten h, k, $\pm l$. Datenre-

Tab. 2. Positionsparameter und äquivalente isotrope thermische Parameter für 2 · 3 THF^{a)}

$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1.37 2.04 2.11 2.40 4.40 5.02 6.57 5.49 6.89 5.80 5.43 6.22 5.01 1.95
$\begin{array}{llllllllllllllllllllllllllllllllllll$	2.04 2.11 2.40 5.02 6.57 5.49 6.89 5.43 6.22 5.43 6.22 5.01 1.95
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2.11 2.40 5.02 6.57 5.49 6.89 5.80 5.43 6.22 5.01 1.95
S3 -0.5645(2) -0.27591(10) -0.38424(8) F1 0.0703(6) 0.0853(3) -0.3179(2) F2 -0.0745(7) 0.0861(3) -0.2500(3) F3 -0.1033(6) 0.0236(5) -0.3305(3) F4 -0.0215(6) -0.3246(4) -0.8296(3) F5 0.1275(8) -0.2436(5) -0.8324(3) F6 0.1698(6) -0.3533(4) -0.8547(3) F7 -0.6041(7) -0.2632(4) -0.2699(3) F8 -0.7371(7) -0.2034(3) -0.3241(4)	2.40 5.02 6.57 5.49 5.80 5.80 5.43 6.22 5.01 1.92
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	4.40 5.02 6.57 5.49 6.89 5.80 5.43 6.22 5.01 1.95
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	5.02 6.57 5.49 6.89 5.80 5.43 6.22 5.01 1.95
F4 -0.0215(6) -0.3246(4) -0.8296(3) F5 0.1275(8) -0.2436(5) -0.8324(3) F6 0.1698(6) -0.3533(4) -0.8547(3) F7 -0.6041(7) -0.2632(4) -0.2699(3) F8 -0.7371(7) -0.2034(3) -0.3241(4)	5.49 6.89 5.80 5.43 6.22 5.01 1.95
F5 0.1275(8) -0.2436(5) -0.8324(3) F6 0.1698(6) -0.3533(4) -0.8547(3) F7 -0.6041(7) -0.2632(4) -0.2699(3) F8 -0.7371(7) -0.2034(3) -0.3241(4)	6.89 5.80 5.43 6.22 5.01 1.95
F6 0.1698(6) -0.3533(4) -0.8547(3) F7 -0.6041(7) -0.2632(4) -0.2699(3) F8 -0.7371(7) -0.2034(3) -0.3241(4)	5.80 5.43 6.22 5.01 1.95
F7 -0.6041(7) -0.2632(4) -0.2699(3) F8 -0.7371(7) -0.2034(3) -0.3241(4)	5.43 6.22 5.01 1.95
F8 -0.7371(7) -0.2034(3) -0.3241(4)	6.22 5.01 1.95
	5.01 1.95
F9 -07502(7) -0.3200(3) -0.3155(3)	1.95
01 -0.0806(4) -0.0216(3) -0.1094(2)	
02 -0.0892(4) -0.0983(2) 0.0264(2)	1.72
0.5 0.0200(5) 0.1047(3) -0.0429(2) 0.0198(2) 0.00000000000000000000000000000000000	2.02
05 0.0484(5) 0.0185(3) 0.0761(2)	2.06
06 0.1874(5) 0.0046(3) -0.1015(2)	1.66
07 0.1042(6) -0.0745(3) -0.3069(3)	3.32
08 0.1534(6) -0.0030(3) -0.2180(2)	3.06
09 -0.0465(6) -0.0684(3) -0.2234(2)	2.52
010 -0.0587(6) -0.2311(3) -0.9310(3)	3.36
011 0.0071(7) -0.3532(3) -0.9588(3)	3.67
012 $0.15/8(5)$ $-0.2534(3)$ $-0.9621(2)$	2.51
013 -0.4619(0) -0.2137(4) -0.3601(3)	3.57
014 - 0.5101(6) - 0.3401(3) - 0.5720(3) 015 - 0.6505(8) - 0.2740(4) - 0.4348(3)	4.73
016 0.0622(5) -0.1384(3) -0.0833(2)	2.18
017 -0.0941(6) -0.0140(4) -0.8317(2)	2.93
018 -0.3760(8) -0.6904(3) -0.8766(3)	3.95
N1 -0.1863(5) 0.0337(3) -0.0079(3)	1.80
N2 0.2651(5) 0.0345(3) 0.0125(2)	1.51
$C_1 -0.1/92(7) 0.0303(4) -0.1195(3) 0.0305(5) -0.0000(3)$	2.08
$C_2 = -0.2624(7) = 0.0295(5) = -0.0632(3)$	2.46
$C_3 = -0.2253(7) = -0.0690(4) = 0.0316(4)$ $C_4 = -0.2503(7) = -0.0109(5) = 0.0404(3)$	2.18
$C_5 = 0.0818(8) = 0.1514(4) = 0.0260(4)$	2.07
C6 = 0.1679(7) $0.1099(4)$ $0.0141(3)$	1.83
C7 0.2740(7) -0.0889(4) 0.0628(3)	1.82
C8 0.3489(7) -0.0245(4) 0.0387(3)	1.99
C9 0.1473(7) 0.0606(4) 0.1056(3)	2.13
C10 0.2348(6) 0.0917(4) 0.0575(3)	1.73
C11 0.3221(6) 0.0223(5) -0.0933(3)	1.92
$C_{12} = 0.3294(6) = 0.0703(4) = -0.0393(3) = -0.0393(3)$	1.52
$C_{13} = -0.0165(8) = 0.0456(5) = -0.2909(4)$ $C_{14} = 0.0902(0) = 0.2002(5) = 0.9597(4)$	3.05
$C_{14} = 0.0002(9) = -0.0027(0) = -0.0007(4)$ $C_{15} = 0.6751(9) = -0.2637(4) = -0.3213(4)$	2.40
$C_{16} = -0.0419(9) = -0.1886(4) = -0.0962(4)$	3.14
C17 0.0177(12) -0.2524(6) -0.1257(6)	5.98
C18 0.1424(11) -0.2301(5) -0.1484(6)	4.71
C19 0.1792(8) -0.1658(5) -0.1129(5)	3.13
C20 -0.0897(9) 0.0383(5) -0.7824(4)	3.33
C21 0.0071(10) 0.0100(7) -0.7393(4)	4.55
(-22) $(-0.0400(12))$ $(-0.0647(6))$ $(-0.7606(4))$	4.31
$C_{23} = 0.00008(9) = -0.0822(5) = -0.8039(4)$	3.55
$C_{24} = 0.3311(21) = 0.0912(7) = 0.0211(6)$ $C_{25} = 0.3134(10) = 0.7620(7) = 0.762(5)$	0.74 7 10
$C_{26} = 0.3404(14) = 0.8103(6) = 0.8476(6)$	5.50
C27 -0.3764(26) -0.7632(7) -0.8934(7)	13.38

^{a)} Siehe Fußnote in Tab. 1.

duktion mit Korrektur für Intensitätsabfall, empirische Absorptionskorrektur mit 5 \u03c8-Scans. Lösung mit Patterson- und Verfeinerung mit Fourier-Techniken (SHELX-76). Nichtwasserstoffatome mit anisotropen Temperaturfaktoren, Wasserstoffatome auf berechneten Positionen (d[C-H] = 0.95 Å), R = 0.0397, $R_w =$ 0.0462 für 7247 Strukturfaktoren $[I \ge 3\sigma(I)]$ und 541 verfeinerte Parameter. Das Enantiomer wurde durch Inversion aller Positionsparameter ermittelt.

Röntgenstrukturanalyse von 2.3 THF: Kristallpräparation und Diffraktometer wie bei $1 \cdot 3$ THF. {Yb[N(CH₂CH₂OH)₃]₂} · THF- $(CF_3SO_3)_3 \cdot 2THF$, Kristallgröße 0.41 × 0.23 × 0.20 mm, Kristallsystem orthorhombisch, Raumgruppe $P2_12_12_1$, a = 10.491(2), b =18.310(5), c = 22.268(7) Å, V = 4278(3) Å³, Z = 4, $d_{\text{ber.}} = 1.76$ g/ cm³. Datensammlung, Korrekturen und Datenreduktion wie bei 1.3 THF, 7535 symmetrieunabhängige Intensitäten. Lösung und Verfeinerung wie bei $1 \cdot 3$ THF. R = 0.0346, $R_w = 0.0389$ für 5936 Strukturfaktoren $[I \ge 3\sigma(I)]$ und 541 verfeinerte Parameter. Das Enantiomer wurde bestimmt.

Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-54255, der Autorennamen und des Zeitschriftenzitats angefordert werden.

- ¹⁾ H. Schumann, Angew. Chem. 96 (1984) 475; Angew. Chem. Int. Ed. Engl. 23 (1984) 474.
- ²⁾ M. F. Johnson, J. H. Forsberg, *Inorg. Chem.* 11 (1972) 2683. ³⁾ L. De Cola, D. L. Smailes, L. M. Vallarino, *Inorg. Chem.* 25 (1986) 1729.
- ⁴⁾ M. Magerstädt, O. A. Gansow, M. W. Brechbiel, D. Colcher, L. Baltzer, R. H. Knop, M. E. Girton, M. Naegele, Magn. Reson. Med. 3 (1986) 808.
- ⁵⁾ C. W. Eigenbrot, K. N. Raymond, Inorg. Chem. 21 (1982) 2867.
- ⁶⁾ P. H. Smith, K. N. Raymond, Inorg. Chem. 24 (1985) 3469.
- ⁷⁾ P. H. Smith, Z. E. Reyes, C.-W. Lee, K. N. Raymond, Inorg. Chem. 27 (1988) 4154.
- 8) J.-M. Lehn, Acc. Chem. Res. 11 (1978) 49.
- ⁹⁾ R. D. Howells, J. D. Cown, Chem. Rev. 77 (1977) 69.
- ¹⁰ R. D. Shannon, Acta Cryst., Sect. A, **32** (1976) 751.
 ¹¹ J. C. Voegele, J. Fischer, R. Weiss, Acta Cryst., Sect. B, **30** (1974) 62.
- ¹²⁾ J. C. Voegele, J. Fischer, R. Weiss, Acta Cryst., Sect. B, 30 (1974) 66.
- ¹³⁾ J. C. Voegele, J. C. Thierry, R. Weiss, Acta Cryst., Sect. B, 30 (1974) 70.
- ¹⁴⁾ M. D. Healy, R. A. Barron, J. Am. Chem. Soc. 111 (1989) 398.
- ¹⁵⁾ K. S. Gharia, M. Singh, S. Mathur, B. S. Sankhla, Synth. React. Inorg. Met.-Org. Chem. 10 (1980) 403. ¹⁶⁾ H. Schumann, W. Genthe, E. Hahn, M. B. Hossain, D. van der
- Helm, J. Organomet. Chem. 299 (1986) 67.

[348/89]